
Forces, Vectors, and Equilibrium 
 
Goals and Introduction 
 
As you may have already read in your textbook or heard in class, a basic definition of a force is 
any “push or pull”. Many pushes or pulls may affect an object at any given moment, as in a tug-
of-war (or push-of-war!), resulting in two possible scenarios: (1) the competition of forces results 
in there being a net amount of force on the object (someone is winning the tug-of-war) and the 
object accelerates, or (2) the competing forces result in there being no net force on the object (no 
one is winning the tug-of-war) and the net amount of force is 0. An object subject to forces that 
falls into this second scenario is said to be in equilibrium. Thus, when an object is in equilibrium, 
the net force on the object is 0 and it will not be accelerating. In this lab, you will investigate the 
forces acting on an object in equilibrium, and use both measurement and vector addition to 
quantify their relationship to each other. 
 
You are probably more familiar with the English system unit of force – the pound (lb) – than the 
metric system or SI unit of force – the newton (N). When you hop on a scale and quote your 
weight in pounds, you are actually quantifying the amount of force with which the scale must 
push on you to keep you in place. If you wanted to express this force in the SI system, you could 
use the fact that 1 lb = 4.448 N to convert your weight into newtons. In physics, we develop our 
equations based on the SI system of units, and so forces should be expressed in terms of 
newtons. 
 
Now, if the scale and floor weren’t there, you would be falling, or pulled downwards. This 
constant downward force pulling on you is the gravitational force on you due to the Earth. So in 
this somewhat simple example of you standing on the scale, there are two forces in competition 
acting on you: (1) the gravitational force pulling downwards and (2) the force of the scale 
pushing up on you (called the normal force, because the force from the contact surface is 
perpendicular to the surface). It is often helpful to create a pictorial representation of the 
competition of forces acting on an object, called a free-body diagram. A free-body diagram for 
the scenario of you standing on a scale is shown in Figure 5.1. The object is represented by a dot 
at the center of the diagram, and each force is then shown as an arrow, pointing in the direction 
the force pushes or pulls the object. The length of each arrow should be proportional to the 
magnitude, or amount, of the force it represents, and thus, choosing a scale for the length of the 
arrows is often helpful in drawing these diagrams.  
 
You are in equilibrium when standing on the scale, and not experiencing a net force, so if these 
are the only two forces acting on you, they must be equal in magnitude and opposite in direction. 
Here, each arrow was drawn with the same length because we expect the forces to be equal in 
magnitude. 



 
 

 
Figure 5.1 

 
Of course, there are more complicated scenarios in which many forces may be acting on an 
object at once, and those forces may point in several directions. In these cases, it is helpful to use 
a coordinate system, break forces into components, and consider the “tug-of-war” in each 
component direction separately. 
 
Figure 5.2 shows a force vector, F



, in a coordinate system such that it makes an angle, θ, with 
the x-axis. That vector can be described as the sum of two parts – an x-component (Fx, blue) and 
a y-component (Fy, red). Given that we are using a Cartesian coordinate system, the x and y 
components will always be perpendicular to one another.  
 

 
 

Figure 5.2 
 



The trigonometry for a right triangle provides us with a set of formulae that define the 
relationships amongst the quantities in the figure, where the angle θ is always measured 
counterclockwise from the positive x-axis (from 0° to 360°). That is, 
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where F


 represents the magnitude, or the amount, of the force. Using Eq. 1, 2, or 3, we are able 

to find the components of the force in our coordinate system if we know the magnitude of the 
force and the angle, or direction, along which the force points. Note that if the force were 
pointing along a direction in the second quadrant, so that the angle θ is between 90° and 180°, 
we would find that the x-component of the force is negative, using Eq. 3. If you are unsure, try 
using a force with a magnitude of 10.0 N at an angle of 135°. Using Eq. 3, you should find that 
Fx = -7.07 N. The negative sign indicates that this force is pointing to the left in the coordinate 
system. The y-component of this vector would be positive, indicating that it points upward in our 
coordinate system. With the ability to express a vector in terms of its components, we should 
consider how this can lead us to the net force on an object (when there is more than one force), 
and how the components of the net force may be expressed. 
 
The net force on an object is found by performing a vector sum, or adding up all of the forces 
acting on the object. We cannot just simply add the magnitudes of all the vectors. We must 
account for the fact that the forces act in different directions in order to correctly express the 
result of the “tug-of-war” on the object. Symbolically, the net force on an object subject to N 
forces would be 
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One of the advantages of finding the components of vectors, with their appropriate signs, is that 
we can examine the results of the “tug-of-war” in the x and y directions separately. If you think 
about it, forces pulling only along the y-axis do not have x-components and, thus, cannot affect 
motion along the x-axis. The reverse is true for forces pulling only along the x-axis. They would 
not affect motion along the y-axis. Thus, the “tugs-of-war” along the x and y axes may be 



considered separately, resulting in the possibility of net force component along either, neither, or 
both, directions. Expressed as an equation, we are saying 
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where x-components that point to the left and y-components that points downwards in the 
coordinate system would be negative. 
 
When an object is in equilibrium, the net force on the object is 0. Thus, both components of the 
net force must also be 0. This means that for an object in equilibrium, 
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When we know all but one of the x-components of the forces acting on an object in equilibrium, 
we can use Eq. 7 to solve for the x-component of the unknown force. Likewise, when we know 
all but one of the y-components of the forces acting on an object in equilibrium, we can use Eq. 8 
to solve for the unknown y-component. 
 
Today, you will measure several forces acting on an object, and determine both experimentally 
and via calculation the necessary force to cause the object to be in equilibrium. You will then 
compare your calculated and experimental results. 
 
Goals: (1)  Gain further practice in breaking vectors into components in a coordinate system  
  and using the components of a vector to find the magnitude of the vector and the  
  angle describing its direction. 

(2)  Develop a better understanding of equilibrium and how to use the equilibrium 
  conditions to solve for an unknown force. 
 
Procedure 
 
Equipment – force table, balance, masses, mass holders, strings with an attached ring, pulleys 
 
The force table has a circular top with a marked circumference for measuring angular position in 
degrees. The ring will have strings attached which may be extended over pulleys on the outer 



edge of the table. The system is in equilibrium when the ring is centered over the post in the 
center of the table and is not touching the post, as shown in the figure below. 
 

 
 
1) Place one of the pulleys at the 180° position and run a string over it so that a mass holder can 
be attached and hang over the side of the force table. Record this angular position and label it as 
θA1. 
 
2) Choose a mass holder and place 150 g of mass on it. Measure and record the mass of the 
mass holder with its 150 g of mass. Label this as mA1. Hang the mass from the string on the 
pulley in the previous step. 
 
3) Place one of the pulleys at the 90° position and run a string over it so that a mass holder can 
be attached and hang over the side of the force table. Record this angular position and label it as 
θB1. 
 
4) Choose a mass holder and place 75 g of mass on it. Measure and record the mass of the mass 
holder with its 75 g of mass. Label this as mB1. Hang the mass from the string on the pulley in 
the previous step. 
 
5) Select another mass holder and attach it to a string draped over a third pulley. By trial and 
error, find both the necessary amount of mass to add to the mass holder and the angular position 
of the pulley that brings the system into equilibrium. Record the angular position of this pulley 
and use a balance to measure the mass of the mass holder you used and the extra masses that 
you added. Label this experimental angular position as θe1 and the mass as me1. The “e1” 
subscripts remind you these are the experimental results of our first set of masses and angles. 
 
6) Remove the masses and mass holders to prepare to create a new set of data. 
 



7) Place one of the pulleys at the 0° position and run a string over it so that a mass holder can be 
attached and hang over the side of the force table. Record this angular position and label it as 
θA2. 
 
8) Choose a mass holder and place 70 g of mass on it. Measure and record the mass of the mass 
holder with its 70 g of mass. Label this as mA2. Hang the mass from the string on the pulley in 
the previous step. 
 
9) Place one of the pulleys at the 200° position and run a string over it so that a mass holder can 
be attached and hang over the side of the force table. Record this angular position and label it as 
θB2. 
 
10) Choose a mass holder and place 150 g of mass on it. Measure and record the mass of the 
mass holder with its 150 g of mass. Label this as mB2. Hang the mass from the string on the 
pulley in the previous step. 
 
11) Place one of the pulleys at the 60° position and run a string over it so that a mass holder can 
be attached and hang over the side of the force table. Record this angular position and label it as 
θC2. 
 
12) Choose a mass holder and place 200 g of mass on it. Measure and record the mass of the 
mass holder with its 200 g of mass. Label this as mC2. Hang the mass from the string on the 
pulley in the previous step. 
 
13) Select another mass holder and attach it to a string draped over a fourth pulley. By trial and 
error, find both the necessary amount of mass to add to the mass holder and the angular position 
of the pulley that brings the system into equilibrium. Record the angular position of this pulley 
and use a balance to measure the mass of the mass holder you used AND the extra masses that 
you added. Label this experimental angular position as θe2 and the mass as me2. 
 
As always, be sure to organize your data records for presentation in your lab report, using tables 
and labels where appropriate. 
 
Data Analysis 
 
We will first work with the data from the first equilibrium case – the data with a subscript “1”. If 
your masses were recorded in grams be sure to convert each of your masses to the SI unit of kg 
for calculations. 
 



The tension in each of the strings pulling on the ring will be equal in magnitude to the 
gravitational force on the mass that is attached to a string. Use each of your masses to find the 
gravitational force on each mass, and thus the tension in each string. This is accomplished by 
using the formula for the gravitational force on an object on Earth, (9.8 N/kg)gF mg m  . 
Retain the subscripts from your masses when labeling your calculated forces.  For example, the 
force on the string due to the mass mA1 should be labeled as FA1.  
 
Question 1: Draw a free-body diagram for one of the mass holders hanging from a string and 
explain why the tension in the string must be equal to the gravitational force on the mass. 
 
You should now have three forces for the first equilibrium dataset: FA1, FB1, and Fe1. Each force 
is associated with a direction that you measured: θA1, θB1, θe1. 
 
Use Eq. 2 and Eq. 3 to find the x and y components of the force FA1, where the x and y directions 
are in the horizontal plane of the force table, as viewed from above. The 0° direction is along the 
positive x-axis and the 90° direction is along the positive y-axis. Label these as FA1x and FA1y. 
 
Use Eq. 2 and Eq. 3 to find the x and y components of the force FB1. Label these as FB1x and 
FB1y. 
 
Recall that the force Fe1 was found by trial and error and was the equilibrating force necessary to 
balance the system. Using the components of FA1 and FB1, Eq. 7, and Eq. 8, find the predicted x 
and y components of the equilibrating force. Label these as Fp1x and Fp1y. The ‘”p1” subscript 
reminds us this is the predicted results for our first combination of masses and angles. 
 
Question 2: To find the predicted equilibrating force, why would we use Eq. 7 and Eq. 8 versus 
using Eq. 5 and Eq. 6? Why set the sum of the force components equal to 0 versus equating the 
sum to a net force on the object? 
 
Use Eq. 1, 2, and/or 3 to find the magnitude of the predicted equilibrating force (Labeled Fp1) 
and its direction (Labeled θp1). Later, we will compare this predicted equilibrating force to that 
found experimentally, Fe1 and θe1. 
 
We will now analyze the second equilibrium case that we investigated – the data with a subscript 
“2”. Begin by converting each of your masses to kg. 
 
Again, use each of your masses to calculate the gravitational force on each mass, and thus, the 
tension in each string. As before, use the relationship (9.8 N/kg)gF mg m  and retain the 

subscripts from your masses when labeling your calculated forces. For example, the force on the 
string due to the mass mA2 should be labeled as FA2. 



 
You should now have four forces for the second equilibrium dataset: FA2, FB2, FC2, and Fe2. 
Each force is associated with a direction that you measured: θA2, θB2, θC2, θe2. 
 
Use Eq. 2 and Eq. 3 to find the x and y components of the force FA2. Label these as FA2x and 
FA2y. 
 
Use Eq. 2 and Eq. 3 to find the x and y components of the force FB2. Label these as FB2x and 
FB2y. 
 
Use Eq. 2 and Eq. 3 to find the x and y components of the force FC2. Label these as FC2x and 
FC2y. 
 
Using the components of FA2, FB2, FC2, Eq. 7, and Eq. 8, find the predicted x and y components 
of the equilibrating force. Label these as Fp2x and Fp2y.  
 
Use Eq. 1, 2, and/or 3 to find the magnitude of the predicted equilibrating force (Labeled Fp2) 
and its direction (Labeled θp2). Later, we will compare this predicted equilibrating force to that 
found experimentally, Fe2 and θe2. 
 
Error Analysis 
 
Calculating percent error is one way to compare the measured value of a quantity to its predicted 
or theoretical value. When the measured quantity is nearly the same as the theoretical value, the 
percent error is small and it can be said that the results of the experiment closely matched the 
prediction. However, when the percent error is large, it can be said that the experimental value 
does not closely match the theoretical value.  
 
To find the percent error between an experimental and predicted value, take the difference 
between them and then divide by the predicted value. Multiplying by 100% then expresses the 
result as a percent, as shown in the equation below. 
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While it does depend on the experiment being performed, in most cases a percent error of 10% or 
less is considered to be acceptable and suggests that the experiment verified the predicted results. 
Percent errors greater than 10% typically suggest that either 1) there is an error in the 
calculations deriving the predicted value or interpreting the experimental data, or 2) there is 



some aspect of the experimental process that is flawed or was not performed correctly, leading to 
invalid data. 
 
For the first equilibrium scenario, calculate the percent error between the predicted magnitude of 
the equilibrating force, Fp1, and that measured experimentally, Fe1. 
 
For the first equilibrium scenario, calculate the percent difference between the predicted 
direction of the equilibrating force, θp1, and that measured experimentally, θe1. 
 
For the second equilibrium scenario, calculate the percent error between the predicted magnitude 
of the equilibrating force, Fp2, and that measured experimentally, Fe2. 
 
For the second equilibrium scenario, calculate the percent difference between the predicted 
direction of the equilibrating force, θp2, and that measured experimentally, θe2. 
 
Question 3: Evaluate your percent differences for the first and second scenarios. How well do 
you feel the experimental results matched the predictions? What aspects of the procedure, or 
measurement could have caused the difference? Explain. 
 
Questions and Conclusions 
 
Be sure to address Questions 1-3 and describe what has been verified and tested by this 
experiment. What are the likely sources of error? Where might the physics principles 
investigated in this lab manifest in everyday life, or in a job setting? 
 
Pre-Lab Questions 
 
Please read through all the instructions for this experiment to acquaint yourself with the 
experimental setup and procedures, and develop any questions you may want to discuss with 
your lab partner or TA before you begin the lab. Then answer the following questions and type 
your answers into the Canvas quiz tool for Forces, Vectors, and Equilibrium, and submit it 
before the start of your lab section on the day this experiment is to be run. 
 
Consider the following forces applied in the x-y plane, where an angle of θ = 0° is along the 
positive x-axis and an angle of θ = 90° is along the positive y-axis. 
 
 
 
 
 



 
 
 
PL-1) A force of 5.0 N is applied at an angle of θ = 25°. The x-component of this force is 

 (A) 5.0 N,  

 (B) 4.5 N,  

 (C) 2.5 N,  

 (D) 2.1 N,  

 (E) 0.0 N,  

 (F) -2.1 N,  

 (G) -2.5 N,  

 (H) -4.5 N,  

 (I) -5.0 N.  
 
PL-2) Two forces, A and B, have magnitudes of 10.0 N and 20.0 N, respectively. What is the 
magnitude of their sum when they both lie along the x-axis, with A directed along θ = 0° and B 
directed along θ = 180°? 

 (A) 30.0 N,  

 (B) 22.4 N,  

 (C) 20.0 N,  

 (D) 10.0 N,  

 (E) 0 N,  

 (F) -10.0 N,  

 (G) -20.0 N,  

 (H) -22.4 N,  

 (I) -30.0 N. 
 
 
 
 
 



 
 

PL-3) Forces A and B have magnitudes of 10.0 N and 20.0 N, respectively. What is the 
magnitude of their sum when A is directed along θ = 0° and B is directed along θ = 270°?  

 (A) 30.0 N,  

 (B) 22.4 N,  

 (C) 20.0 N,  

 (D) 10.0 N,  

 (E) 0 N,  

 (F) -10.0 N,  

 (G) -20.0 N,  

 (H) -22.4 N,  

 (I) -30.0 N. 
 
PL-4) Forces A and B have magnitudes of 10.0 N and 20.0 N, respectively. What is the 
magnitude of their sum when A is directed along θ = 0° and B is directed along θ = 50°? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

PL-5) Thelma and Louise do a variation of the "Forces, Vectors and Equilibrium" experiment 
and set up two force vectors as shown by the red arrows in the following figure. Which of the 
blue arrows best represents the force they will have to apply to balance the two red force vectors 
and bring the system of three forces into equilibrium?  

 

 (A) Vector A,  

 (B) Vector B,  

 (C) Vector C,  

 (D) Vector D,  

 (E) Vector E. 
 
 
 
 
 
 
 
 


