
Rotational Dynamics 
 
Goals and Introduction 
 
In translational dynamics, we use the quantities displacement, velocity, acceleration, mass and 
force to model the motion of objects. In that model, a net force acting on an object with some 
amount of mass will cause that object to accelerate and change its motion. The position and 
velocity of the object can then be predicted later on in time based on its initial position and 
velocity, and this acceleration (as long as it is applied). Similarly, an object that is rotating is in 
motion and can have its rotational motion changed. However, the quantities of displacement, 
velocity and acceleration are difficult to apply in this scenario where the object is not moving in-
line, or “translating.” 
 
At a fundamental level, it is true that forces cause an object’s motion to change. However, it is 
possible that an applied force can cause an object to rotate rather than translate. The ability of a 
force to cause rotation is called a torque (  ) and the change in rotational motion that results from 
an applied torque depends on the mass of the object and its size. After all, if you consider 
applying a force to the edge of a door in order to cause it to rotate about its hinges, it is much 
easier to rotate a lighter door than it is a heavier door of the same size and shape (imagine a 
screen door and the door to a bank vault). Likewise, two different doors could have the same 
mass and height, but one could be made of a less dense material, causing it to be wider. That 
“less dense door” would have a different change in rotational motion from an applied torque than 
the other door. The physical quantity that accounts for the differences between all of these doors, 
and other objects, is called the moment of inertia, I. In this lab, you will work to develop an 
understanding of how to model rotational motion and quantify several aspects in order to 
measure the moment of inertia of an object and compare to its theoretical value. 
 
Imagine looking down at an object that is rotating, such as a wheel or disk, as shown in Figure 
13.1. The angular position of the object can be tracked by using a point on the outer edge of the 
object and mapping its location as the object spins. If the object is rotating, the point is seen to 
move from one position to another and it can be said that the object has undergone an angular 
displacement, Δθ. 
 

 
 

Figure 13.1 



For the case of an object with a radius, r, such as that shown in the figure, the distance traveled 
by the point, s, is an arc length and is related to the angular displacement by 
 
s r     (Eq. 1) 
 
where Δθ is measured in radians. For the purposes of this lab, we will measure all angular 
displacements as positive. 
 
Given that it takes a certain amount of time for this angular displacement to occur, an average 
angular speed, ωavg, can be found in a similar fashion to how we found an average translational 
velocity, vavg, earlier in the semester. As shown in Equation 2, the average angular speed would 
be the angular displacement divided by the time over which the change occurred, and would 
have units of radians per second (rad/s). 
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Again, the rotational motion of the object can be connected to the translational motion of the 
point on the object by observing that as the object goes through an angular displacement in a 
certain amount of time, the point travels a distance, s. Thus, the point must be moving with some 
average speed, v. This average speed would depend on the distance between the point and the 
center of rotation, as this would affect the distance traveled. Yet, all points on the object must 
have the same angular velocity at any moment! This truth is summarized in Equation 3, where 
the speed of any point on the object can be found by knowing the instantaneous angular speed 
and the distance of the point from the center of rotation. 
 
v r   (Eq. 3) 
 
Now, the object’s rotational motion could be changing, and just as we did in translational 
mechanics, we can identify this is occurring because the speed may be changing. In other words, 
the rotational motion is changing if there is some angular acceleration, α (we will be using 
models involving constant acceleration). This is related to the point on the object undergoing a 
change in speed or experiencing a tangential acceleration, at. By definition, the angular 
acceleration of an object is equal to the change in angular speed over the time in which that 
change occurs (Eq. 4). This is related to the tangential acceleration of any point on the object by 
the distance of that point from the center of rotation (Eq. 5), very similar to how Equations 1 and 
3 related the translational motion of the point to the rotational motion of the object. 
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ta r   (Eq. 5) 
 
Finally, we can relate the applied torque on an object to a resulting angular acceleration, just as 
we related an applied force to a resulting acceleration in Newton’s second law (F = ma) earlier in 
the semester. Torques cause the rotational motion to change, which is observed by measuring an 
angular acceleration. As shown in Equation 6, the resulting angular acceleration depends on the 
moment of inertia of the object, just as the resulting acceleration from an applied force depended 
on the mass before (thus, the moment of inertia behaves rather like mass in that it resists changes 
in motion). 
 

I    (Eq. 6) 
 

 
 

Figure 13.2 
 
The apparatus used in this lab is shown in Figure 13.2. The rotating components of the 
experiment consist of a hub with radius r, attached to a platform upon which a disk may be 
placed. A cord that is wrapped around the hub is attached to a mass holder. When mass is placed 
on the end and is allowed to fall, the gravitational force on the mass will create a tension in the 
cord which will cause the hub to rotate by applying a torque. The amount of torque applied to the 
hub will be 
 

mgr    (Eq.7) 
 



where mg is the gravitational force, or weight, of the mass. The mass should be in kg, and the 
radius in m. This torque is illustrated by the top view shown in Figure 13.3. 
 

 
Figure 13.3 

 
A smart pulley will be used to measure the acceleration of the mass. Because this is related to the 
movement of the string and the string is wrapped around the exterior of the hub, the smart pulley 
is also measuring the tangential acceleration, at, of a point on the edge of the hub, a distance r 
from its center of rotation. By measuring tangential acceleration, it is possible to find the angular 
acceleration, α, of the hub and any components attached to it (the platform and the disk).  
 
It is important to note that when components like the platform and disk are rotating with the hub, 
we are able to sum their individual moments of inertia to find the total moment of inertia. For 
example, the formula for the moment of inertia of a disk is 
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where M is the mass of the disk and R is the radius of the disk. If we know the moment of inertia 
for the hub/platform combo, the total moment of inertia would be given by Equation 9. 
 

/total hub plat diskI I I    (Eq. 9) 
 
Since the shape of the hub/platform is quite irregular, unlike the disk, there is not an easy way to 
determine the hub/platform’s moment of inertia mathematically. Therefore, you will be 
experimentally determining the hub/platform moment of inertia, and using that result in hour 
calculations. 
 
In this lab, you will use the smart pulley to measure tangential acceleration, at, and then calculate 
the angular acceleration, α, of the hub/platform system. You will then predict the amount of 



added mass necessary to achieve the same angular acceleration with the disk attached, and test 
your predictions. 
 
 
Goals: (1)  Develop a better understanding of rotational kinematics and the relationships  
  between torque, angular acceleration, and tangential acceleration. 

(2)  Predict the necessary applied torque and force to cause a particular change in 
motion and test your prediction 

 
Procedure 
 
Equipment – hub and platform system with pulleys including a smart pulley, computer with 
DataLogger interface and LoggerPro software, disk, a set of removable masses, two mass 
holders, meter stick or caliper 
 
1) Check to make sure that the pulley is connected to its interface and that the interface is 
connected to the computer. Open LoggerPro by clicking on the link on the course website. You 
should see a window with axes for plotting velocity vs. time. Click on the time in the lower right 
corner of the plot and change the final value to 5 s. 
 
2) We will now check to make sure the pulley is working. Hit the green button on the top-center 
of the screen in LoggerPro (each time you hit the green button, the previous plot is erased and a 
new one is created). Spin the pulley slowly, using your hand, while the computer is plotting data 
and observe that a velocity is measured. 
 
Because we would like to measure the moment of inertia of the hub/platform combo, we would 
like to first eliminate the effects of friction between the hub and the axle about which it rotates. 
There is only so much we can physically do to reduce this effect, so we will instead try to 
compensate for the issue by determining the amount of mass necessary to counter the effects of 
friction on the axle. This will be evident if the attached mass causes the hub to rotate at a 
constant angular velocity (which means the pulley records a constant velocity), as it falls. 
 
3) Measure and record the mass of the lighter of the two mass holders. Then, hang it from the 
free end of the cord as shown in Figure 13.2. Label this as mlight. Attach the other end of the 
string to the small peg on the side of the hub and wind the platform to pull the string up so that 
the mass holder is at its highest point, near the pulley. Then hold the platform in place. 
 
4) By trial and error, determine the amount of additional mass necessary to cause the hub to 
rotate with a constant velocity when the holder and the additional mass fall. To measure this, 
attach mass to the holder while it is hanging. Hit the green button on the top-center of the screen 



in LoggerPro and then release the mass/holder, allowing it to fall to the floor. Record the total 
mass necessary to compensate for friction – the mass of the holder and the additional mass 
added. Label this as mf1. 

 
 
HINT: You will probably need several attempts to find the right mass for the previous step. The 
result will probably lie between 5 and 50 g. It is important to get this right because any additional 
mass beyond this amount is what will really be causing acceleration, as measured by the pulley. 
This amount of mass must always be subtracted from the totals we measure later, to account for 
the effects of friction. 
 
5) We will now make measurements to find the moment of inertia of the hub/platform. Choose 
and record an additional amount of mass to be the driving mass for the hub, and label it as 
mhub1. Add your driving mass to mf1 and hang this total mass from the free end of the cord.  
 
HINT: If you need to switch to the other mass holder at any time, be sure to measure its mass 
and add mass to it in order to achieve your friction-compensating mass, mf1. That amount of 
mass should always be present before adding any driving mass. 
 
6) Hit the green button on the top-center of the screen in LoggerPro and then release the 
mass/holder, allowing it to fall to the floor. Then hit the red button to stop the data collection. 
 
7) Identify the straight-line portion of your graph where it looks like the acceleration (slope) was 
constant. If the straight-line portion occurs over less than 1 s, choose a lesser driving mass and 
repeat the last step. Using the mouse, click and drag across the data in the straight-line portion 
you would like to use to find the acceleration. Then release the mouse button. 
 
8) At the top of the screen, click on the menu “Analyze” and then select “Linear Fit”. An 
information box will appear that gives the slope of the line fitting your data range you 
highlighted. Record the slope (acceleration in m/s2) and label it as ahub1. Repeat steps 6-8 until 
you have ten values recorded for ahub1. This is tangential acceleration. 
 
HINT: Note that you may need to reattach the string to the peg on the hub in order to rewind the 
string after each trial. Alternatively, when allowing the string to unwind from the hub, stop the 
hub from rotating just before the end of the string has been reached, so that the string doesn’t fall 
off of the peg. This will allow you to more easily rewind the string around the hub for each of 
your remaining trials. DO NOT tie the string to the hub, as this can cause the string to slip into 
the axle, and become permanently stuck. 
 



9) Calculate the mean of your ten accelerations. Then, use this mean to calculate an angular 
acceleration of the hub/platform (see Figure 13.3 and the Goals and Introduction for help 
thinking through this). 
 
10) Measure and record the diameter of the hub using the caliper (or ruler if no caliper is 
present). Then, calculate the radius of the hub, labeling it as r. 
 
11) Using your driving mass and Equation 7, calculate the torque that is being applied to the hub 
(we have already compensated for friction). 
 
12) Now, using your torque, your angular acceleration, and Equation 6, calculate the moment of 
inertia of the hub/platform. 
 
13) Now, we will add a disk to the platform. Measure and record the mass of the disk (M) and 
the diameter of the disk. Then, calculate the radius of the disk, labeling it as R. 
 
14) Calculate the predicted moment of inertia of the disk, Idisk, using Equation 8. 
 
15) Calculate the predicted total moment of inertia when the disk is added to the hub/platform, 
using your calculated moment of inertia for the hub/platform, and your predicted value of the 
disk’s moment of inertia. Label this as Ipredict. 
 
16) Place the disk on the platform. Using an analysis similar to one you just applied, determine 
the necessary driving mass to cause the hub/platform/disk system to rotate with an angular 
acceleration equal to your mean value found in step 9. Record the driving mass and label it as 
mhub2. 
 
17) Measure and record the mass of the heavier of the two mass holders. Then, hang it from the 
free end of the cord as shown in Figure 13.2. Label this as mheavy. 
 
18) Using the heavier mass holder, by trial and error, determine the amount of additional mass 
necessary to cause the hub to rotate with a constant velocity when the holder and the additional 
mass fall. Record the total mass (the mass of the holder and the additional mass added) 
necessary to compensate for friction now that we have added the disk to the platform. Label this 
as mf2. 
 
19) Add your driving mass, mhub2, to mf2 and hang this total mass from the free end of the cord. 
 
20) Hit the green button on the top-center of the screen in LoggerPro and then release the 
mass/holder, allowing it to fall to the floor. Then hit the red button to stop the data collection. 



 
21) Identify the straight-line portion of your graph where it looks like the acceleration (slope) 
was constant. Using the mouse, click and drag across the data in the straight-line portion you 
would like to use to find the acceleration. Then release the mouse button. 
 
22) At the top of the screen, click on the menu “Analyze” and then select “Linear Fit”. An 
information box will appear that gives the slope of the line fitting your data range you 
highlighted. If your acceleration (the slope) is not somewhat similar to the mean of ahub1, check 
your calculations in step 16 and consult your TA. Record the slope (acceleration in m/s2) and 
label it as ahub2. Repeat steps 20-22 until you have ten values recorded for ahub2. Again, this is 
tangential acceleration. 
 
Data Analysis 
 
Be sure to show all of your calculations from the Procedure section either there or here in the 
Data Analysis section – your choice for presentation. 
 
Calculate the mean value of the ten accelerations measured for the hub/platform, before the disk 
was added. 
 
Calculate the mean value of the ten accelerations measured for the hub/platform/disk, after the 
disk was added. 
 
Using a process similar to that which you performed in the procedure, use the mean value of the 
acceleration for the hub/platform/disk to find the total moment of inertia of the 
hub/platform/disk. Label your result as Iexp. 
 
Error Analysis 
 
Calculate the percent error between the mean value of the hub/platform acceleration, ahub1, and 
the mean value of the hub/platform/disk acceleration, ahub2. 
 
Calculate the percent error between your predicted total moment of inertia, Ipredict (from Eq. 9), 
and the experimental moment of inertia, Iexp. 
 
Question 1: Should these percent errors be similar? Explain your reasoning. 
 
 
 
 



Questions and Conclusions 
 
Be sure to address Question 1 and describe what has been verified and tested by this experiment. 
What are the likely sources of error? Where might the physics principles investigated in this lab 
manifest in everyday life, or in a job setting? 
 
Pre-Lab Questions 
 
Please read through all the instructions for this experiment to acquaint yourself with the 
experimental setup and procedures, and develop any questions you may want to discuss with 
your lab partner or TA before you begin. Then answer the following questions and type your 
answers into the Canvas quiz tool for “Rotational Dynamics,” and submit it before the start of 
your lab section on the day this experiment is to be run. 
 
Adam and Jamie are doing the Rotational Dynamics lab “on a grand scale.”  They weld a 55-
gallon oil drum (diameter 0.59 m, height 0.91 m) onto a steel bracket designed to hold a large 
concrete disk. Together, this hub (the drum) and platform can rotate around a vertical axis on a 
low-friction bearing as shown in Figure 13.2 (see the lab Introduction). They wrap a heavy steel 
cable around the circumference of the drum and lead it through two pulleys, as shown, so that 
different masses can be attached. The weight of these masses provides the force tangent to the 
surface of the drum - a torque - that in turn provides the angular acceleration of the hub, 
platform, and (when it is installed) the concrete disk.   
 
First, Adam and Jamie add just enough mass to the end of the wire to overcome the friction of 
the system, so the weight drops at a constant velocity and the hub and platform (the disk has not 
been installed yet) rotate at a constant angular velocity. Then, they add more weight to the end of 
the wire (Adam hangs from it, Adam has a mass of 78 kg), and measure his downward 
acceleration by analyzing their video frame-by-frame.  Following Steps 5-12 of the Procedure, 
they calculate the moment of inertia of the hub and platform (without the concrete slab) to be 
Ihub1 = 550 kg.m2. 
 
PL-1) Predict the moment of inertia, in kg.m2, of the concrete disk (Adam rescued it from the 
garage of a celebrity mansion where it was used as a turntable for turning cars around; apparently 
the owner did not like backing out of the garage!). The disk is 3.6 m in diameter and 0.23 m 
thick, and has a mass of 5619 kg. 
 
PL-2) Adam and Jamie use a crane to lower the concrete disk gently onto the hub/platform.  
They hang an old Volkswagen Beetle (mass 826 kg) from the wire and videotape it while it falls.  
They do a frame-by-frame analysis of their video to find that the car accelerated downward at a 
rate of 0.073 m/s2. Assuming the steel cable was taught and did not stretch, calculate the angular 



acceleration of the hub/platform/disk, in radians per second-squared (rad/s2). Recall that the 
diameter of the drum is 0.59 m. [Hint: see Steps 9-12 of the Procedure and consider Figure 13.3 
in the lab]. 
 
PL-3) Calculate the amount of torque, in N.m, that the cable exerts on the hub/platform/disk in 
the previous example. Recall the mass of the Beetle is 826 kg and the diameter of the drum is 
0.59 m. [Hint: see Steps 9-12 of the Procedure and consider Figure 13.3 in the lab]. 
 
PL-4) Using your torque and angular acceleration found in the previous two questions, calculate 
the total moment of inertia of the entire hub/platform/disk assembly in kg.m2. [Hint: see Steps 9-
12 of the Procedure]. 
 
PL-5) Calculate the moment of inertia, in kg.m2, for the disk alone. Recall that the moment of 
inertia they measured for the hub/platform was 550 kg.m2. 
 
 
 


