
Uniform Circular Motion 
 
Goals and Introduction 
 
The purpose of this experiment is to investigate the scenario of an object in uniform circular 
motion. An object is in uniform circular motion when it travels in a circular path with radius, r, 
and moves with a constant speed, v. Though the object moves with a constant speed, its velocity 
changes because the direction the object is moving is constantly changing. (Remember that speed 
is the magnitude of the velocity.) By definition, if the velocity of an object is changing, it is 
being accelerated. Thus, there must be an acceleration responsible for changing the direction of 
an object’s velocity when it is in uniform circular motion. A graphical examination of the change 
in velocity for an object moving in a circle is shown in Figure 10.1. 
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Figure 10.1 

 
At any instant, the velocity of an object in circular motion is directed tangent to the circular path. 
This is illustrated by the vectors 1v and 2v  in Figure 10.1(a), which represent the object’s 
velocity when it is at the locations P1 and P2 respectively. By definition, the direction of the 
change in velocity is the same as the direction of the acceleration of the object, as in the 
equation,  
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We can find the direction of the change in velocity graphically by recognizing that 2 1∆ = −v v v    
between points P1 and P2. Recall that we can find the vector sum of two vectors graphically by 
adding them using the Tip-to-Tail Method. To make use of this in this instance, it may help to 
rearrange our equation for the change in velocity to appear as 1 2+ ∆ =

  v v v . This says that there is 

some vector, ∆v , that can be added to the vector 1
v  and result in the vector 2

v . In the tip-to-tail 
method (see Figure 10.1(b)), the tail of the second vector in the sum is placed at the tip of the 
first vector, and the resulting vector is drawn from the tail of the first vector to the tip of the 
second vector. Knowing the velocity is tangent at the two points, we can complete the first vector 
and the resulting vector in this relationship. In other words, the first vector in the sum, 1

v , can be 

drawn over to the right, away from the main circle, and the resulting vector, 2
v , can be drawn, 

starting from the tail of  1
v . By connecting the tip of 1

v  and the tip of 2
v , we draw the vector  

∆
v , which is what must be added to the first velocity to result in the second.  

 
Note that the direction of this vector, ∆v , points towards the center of the circular motion. In 
fact, if we repeated this process at other locations, we would again find that the necessary change 
in velocity points towards the center of the circular motion. As stated in Eq. 1, this means there 
must always be an acceleration towards the center of the circular motion. Again, this acceleration 
is not changing the speed of the moving object, but is constantly changing the direction. For this 
scenario (an object moving in a circular path), we give a special name to this necessary 
acceleration – the centripetal acceleration, ac. 
 
Imagine swinging an object in a circle that is attached to a string in your hand. You may even try 
this using some spare string, or a shoelace, and a small object that could be attached to the string 
(Though be careful to not poke out your eye! Physics can be dangerous. ). Suppose that you 
get the object moving in a circle and with a constant speed. Here, the tension in the string is a 
force that is always pulling towards the center of the motion. It is responsible for changing the 
direction of the object, and thus it is a force responsible for the centripetal acceleration, ac, in this 
scenario. 
 
There are a few ways we can quantify the uniform circular motion of this object. First, the object 
is traveling a specific distance again and again - the circumference of the circular path ( 2 rπ ). 
Since the object is traveling with a constant speed (v), the time it takes to travel the circular path 
is the same each time. The time necessary to complete one cycle is called the period (T). Since 
the speed of an object is the distance it travels divided by the time, 
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Thus, if we measure the length of the string from our hand to the center of mass of the object, 
and measure the time it takes for the object to travel the circular path while we swing it, we could 
calculate the speed of the object. 
 
Now suppose you try to spin the object faster, while keeping the length of the string (and thus the 
radius of the circular path) constant. What do you have to do to accomplish this? You probably 
have to rotate your hand more quickly and perhaps have a firmer grip on the string. In essence, 
you are pulling harder on the string, and thus on the object. 
 
Why should you have to pull a little harder to make the object travel at a greater speed on the 
same circle? Think again about our vectors in Figure 10.1(b). If the speed is greater, then the 
length of the velocity vectors would be greater, though they are on the same-sized circle. If you 
think through the vector addition again, the vector that must be added to 1

v  in order to result in 

2
v  is still the vector ∆v . However, ∆v will need to be longer than it was previously (it still 
points towards the center). This means that its magnitude must be greater, which means the 
centripetal acceleration must be greater! So, the speed of an object plays a role in determining 
the amount of centripetal acceleration. 
 
A similar effect can be observed if you shorten the length of the string between your hand and 
the object and try to spin it at the same speed as when the string was longer. Given a particular 
speed, it takes more centripetal acceleration to travel a smaller circular path, because the velocity 
vector needs to be turned more quickly. It can be shown mathematically that the proper 
relationship between these quantities is given by 
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where, ac is the centripetal acceleration, v is the speed of the object, and r is the radius of the 
circular path. 
 
Thinking about our scenario of an object attached to a string, the force responsible for causing 
the centripetal acceleration is the tension in the string. In other scenarios, a different force may 
responsible for causing the centripetal acceleration. In any scenario, though, Newton’s second 
law can be used to describe the amount of force causing this centripetal acceleration on an object 
with mass, m. We call this force the centripetal force, Fc, where 
 



c cF ma= .  (Eq. 4) 
 
Like the centripetal acceleration, the centripetal force must point towards the center of the 
circular motion. Note that this IS NOT a new type of force or source of force. We are merely 
using Newton’s second law to say that if you know a certain mass is subject to an amount of 
acceleration, it is being caused by some amount of net force, Fc. In every case of an object 
moving in a circle, there is some real force (or a net amount of force) that is acting as the 
centripetal force. For example, the tension was acting as the centripetal force in our scenario of 
an object attached to a string. For the case of the Moon orbiting the Earth, the gravitational force 
is always pulling the Moon toward the Earth and acting as the centripetal force. 
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Figure 10.2 
 
Today, we will use the apparatus shown in Figure 10.2(a) to measure the centripetal force 
necessary to keep a mass whirling in a circular path at constant speed. The apparatus consists of 
a bob B suspended by string on a support rod R that is attached to a rotating axle A. There is also 
a pointed tip, P, that will be used as a target location for the bob, as it spins around the axle A. 
The bob is attached to the axle by means of a spring that provides the centripetal force necessary 
for uniform circular motion. The position of the bob along the rod, and therefore its distance 
from the axis of rotation, is adjustable. The other end of the rod has a counterweight C that can 
also be adjusted so as to maintain rotational stability (avoid wobble). The assembly can be 
rotated about the vertical axis, through A, by using your fingers. The quality of the bearings is so 
good that it is quite easy to maintain a constant speed, and thus experiment with uniform circular 
motion.  
 



The objective is to rotate the bob at a constant speed so that its tip lines up with the top of the 
pointer P. When this happens, you will be able to measure the radius, r, of the circular path, and 
using a stopwatch, determine the period of the circular motion, T. Because it may be difficult to 
time the bob for one trip around the circle, it is best to find the total time, Δt, for a number of 
repetitions or cycles, N, and calculate the average time for one cycle. The period is then 
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Once the radius and period are known, the speed and centripetal acceleration can be calculated. 
Measuring the mass of the bob, the centripetal force can also be determined, and this entire 
process may be repeated for different starting distances of the bob/pointer from the axle. 
 
In order to check our calculated results of the centripetal force from the circular motion analysis, 
we can measure the force exerted by the spring by stretching it the same amount as when it was 
moving in a circle. This is accomplished by determining the amount of weight, at W, that is 
necessary to achieve the proper stretch of the spring, as depicted in Figure 10.2(b). This is not 
done while rotating the apparatus, but afterwards. Think about the free-body diagram of the bob 
(not moving) when it has the spring force pulling to the right and the tension attached to the 
weight pulling to the left. Why is the amount of weight at W the same amount of force being 
exerted by the spring? 
 
Goals: (1)  Investigate and quantify aspects of circular motion. 

(2)  Calculate the required amount of force to keep an object in circular motion by 
using measurements of aspects of the circular motion (speed, period, mass, 
radius). 

(3)  Separately, measure the amount of force that was being exerted during the 
circular motion directly, and compare to the results from the circular motion 
analysis. 

 
Procedure 
 
Equipment – meter stick (or other distance-measurement tool), mass holder with removable 
masses, balance, stopwatch, the bob-rod-counterweight apparatus, manual rotating axle with 
spring, pulley 
 
1) Remove the bob, B, from the apparatus and measure and record its mass, m, using the 
balance. 
 



2) Attach the bob, B, to the support rod, R, and adjust its position so that it is located as close to 
the rotating axle, A, as possible. Notice that there is a flat region on the support rod where the 
thumbscrew can clamp it. DO NOT go beyond the flat portion on the rod. Make sure that the rod 
is clamped securely. 
 
3) Adjust the position of the counterweight, C, so that it is located as close to the axle, A, as 
possible. Again, DO NOT go beyond the flat portion on the support rod. 
 
4) Adjust the pointer, P, so that it is accurately lined up with the tip of the bob. Measure and 
record the distance from the pointer to the center of the axle. This will be the radius, r, of the 
circular motion of the bob. 
 
5) Now, attach the spring to the bob and the axle support. 
 
6) Practice rotating the axle, A, at a constant rate so that the bottom tip of the bob, B, passes 
directly over the pointer, P. When the bob moves in this way, it is traveling in a circle with a 
radius equivalent to what you recorded in step 4. The spring is pulling on the bob throughout the 
motion, and the spring force is acting as the centripetal force. In order to measure the period, one 
person will need to operate the stopwatch while the other person rotates the axle. Because it may 
be difficult to time the bob for one trip around the circle, it is best to find the total time, Δt, for a 
number of revolutions, N, and calculate the average time for one revolution. The person using the 
stopwatch will also need to count the number of revolutions. Practice this process a few times 
before proceeding to the next step. 
 
7) Choose and record a number of revolutions, N, that you think is appropriate for determining 
the period based on your practice rounds. 
 
HINT:  One revolution is not sufficient. Your reaction time will be significant compared to the 
period you measure. When you spin the axle with the bob passing over the pointer, it will go 
through several revolutions before slowing down and drifting towards the center. Get an idea of a 
good value for N that you could use by practicing the measurement process.  
 
8) Then, while one partner spins the axle so that the bob continues to pass over the pointer, the 
other partner should use the stopwatch to Measure and record the total time, Δt, for the bob to 
travel through the number of revolutions you chose. Repeat this process four more times so that 
you have five measurements. 
 
9) After you stop rotating the axle, Attach the mass holder, W, to the bob by running a cord over 
the pulley. The spring should still be attached to the other end of the bob. 
 



10) Add mass to the mass holder, W, until the bottom tip of the bob is aligned with the pointer, 
P. Notice that the spring is stretching! When the bob is now hovering over the pointer, it is in 
equilibrium. The tension in the cord must be equal in magnitude to the spring’s restoring force. 
Likewise, the weights are in equilibrium, so the tension in the cord must be equal in magnitude 
to the gravitational force (weight) on the masses at W. How does the spring force compare to the 
gravitational force on the total mass at W? Also, think about what direction the spring force is 
acting upon the bob, compared to the tension in the cord. 
 
11) Use the balance to measure and record the total mass, M, that brought the bob in line with 
the pointer. Don’t forget to include the holder itself, since it has mass and was also hanging! 
 
12) Repeat steps 2-11 three more times, but move the bob and pointer about 1 cm further away 
from the axle each time. You will also need to move the counterweight, C, about the same 
distance from the axle each time in order to maintain rotational stability. 
 
13) Before proceeding to performing an analysis of the experiment, it might be wise to organize 
your data especially, since you will have multiple time measurements for each position of the 
pointer.  
 
Data Analysis 
 
Here, we will step through the analysis for one trial (steps 2-11). You should repeat the analysis 
for the other three positions of the pointer. 
 
For the first position of the pointer, you have recorded five measurements of the total time, Δt, 
for a certain number of revolutions, N. Calculate the average time for this number of revolutions. 
 
Question 1: Why did we make five time measurements and average them, rather than making 
just one measurement? What is/are the advantage(s) of this? 
 
Calculate the period, T, for this trial using Eq. 5 and the average total time you found.  
 
Using this period and the radius, r, calculate the speed of the bob, v, using Eq. 2.  
 
Use Eq. 3 and 4 to calculate the magnitude of the centripetal force, Fc, that was acting on the bob 
while it was in circular motion, where m is the mass of the bob.  
 
Lastly, use the total mass, M, that was added at W to stretch the bob and spring to reach the 
pointer to calculate the amount of the spring restoring force, sF , when stretched to that position. 
The logic here was that given equilibrium for the entire system, 
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where gF  is the gravitational force, or weight on the total mass, M. 

 
Question 2: Why are they equal? Consider the entire system in equilibrium, as depicted in 
Figure 10.2(b). Clearly explain why the spring’s restoring force should be equal to the 
gravitational force, or weight, hanging from the cord and draw a free-body diagram to 
accompany your answer. 
 
Repeat this entire analysis (except for Question 1 and 2) for the other three trials (other three 
distances between the pointer and the axle). It may be wise to organize all of your results in a 
table with clear labels. 
 
Error Analysis 
 
Ideally, the spring restoring force that you found in each trial should be equal to the centripetal 
force that you calculated in each trial. However, things are rarely ideal. 
 
Consider the spring restoring force you found in each trial to be the “accepted value”, and 
calculate the percent error between that and the centripetal force you found in each trial. 
 
Question 3: Evaluate your percent error calculations. Does your percent error suggest that the 
centripetal force and the spring restoring force were identical? 
 
Questions and Conclusions 
 
Be sure to address Questions 1-3 and describe what has been verified and tested by this 
experiment. What are the likely sources of error? Where might the physics principles 
investigated in this lab manifest in everyday life, or in a job setting? 
 
Pre-Lab Questions 
 
Please read through all the instructions for this experiment to acquaint yourself with the 
experimental setup and procedures, and develop any questions you may want to discuss with 
your lab partner or TA before you begin. Then answer the following questions and type your 
answers into the Canvas quiz tool for “Uniform Circular Motion,” and submit it before the start 
of your lab section on the day this experiment is to be run. 
 



PL-1) Jane is experimenting using the apparatus for this experiment. In the figure below, we see 
a “snapshot” of the apparatus at one instant during its rotation. What is the direction of the 
centripetal force and acceleration vectors of the bob (B)? 
  

 
 
 
 
 

 (A) Up,  

 (B) Down,  

 (C) To the left,  

 (D) To the right,  

 (E) Into the page,  

 (F) Out of the page.  

 
PL-2) If Jane spins the axle (A) faster, what will happen to the position of the bob (B) with 
respect to the pointer (P) compared with the case in PL-1 shown in the figure? Why? 
  

 (A) It stays the same, because the system is in equilibrium,  

 
(B) The bob will swing in a wider circle, passing to the left of P, because the spring 
stretches a little and thus provides a larger centripetal force,  

 
(C) The bob will swing in a smaller circle, passing to the right of P, because the spring 
stretches a little less and thus provides a smaller centripetal force.  

 



PL-3) Jane uses a stopwatch to measure the time the apparatus takes to complete three full 
revolutions (she starts and stops the watch as the bob passes the pointer); she measures the time 
to be 4.2 s. What is the period of rotation in seconds? 
 
PL-4) In a separate trial, Jane determines the period to be 2.14 sec. With the apparatus stopped, 
she measures the radius to be 13.2 cm and the mass of the bob (B) to be 253 g. What was the 
centripetal force on the bob, in newtons, while it was in uniform circular motion? 
 
PL-5) With the rotation of the apparatus stopped, Jane attaches a string and mass holder (W), 
as shown in the figure.  The mass of the mass holder (W) itself is 12.8 g. Using the data collected 
in PL-4 [period = 2.14 s, radius = 13.2 cm, mass of bob = 253 g], predict how much mass (in 
grams) Jane will need to add to the mass holder (W) in order to stretch the spring so the bob 
aligns with the pointer (P). 
 

 
 
 
 
 


